Deep Phenotyping: Deep Learning for Temporal Phenotype/Genotype Classification
نویسندگان
چکیده
High resolution and high throughput, genotype to phenotype studies in plants are underway to accelerate breeding of climate ready crops. Complex developmental phenotypes are observed by imaging a variety of accessions in different environment conditions, however extracting the genetically heritable traits is challenging. In the recent years, deep learning techniques and in particular Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs) and Long-Short Term Memories (LSTMs), have shown great success in visual data recognition, classification, and sequence learning tasks. In this paper, we proposed a CNN-LSTM framework for plant classification of various genotypes. Here, we exploit the power of deep CNNs for joint feature and classifier learning, within an automatic phenotyping scheme for genotype classification. Further, plant growth variation over time is also important in phenotyping their dynamic behavior. This was fed into the deep learning framework using LSTMs to model these temporal cues for different plant accessions. We generated a replicated dataset of four accessions of Arabidopsis and carried out automated phenotyping experiments. The results provide evidence of the benefits of our approach over using traditional hand-crafted image analysis features and other genotype classification frameworks. We also demonstrate that temporal information further improves the performance of the phenotype classification system. 1 . CC-BY 4.0 International license peer-reviewed) is the author/funder. It is made available under a The copyright holder for this preprint (which was not . http://dx.doi.org/10.1101/134205 doi: bioRxiv preprint first posted online May. 4, 2017;
منابع مشابه
Deep Plant Phenomics: A Deep Learning Platform for Complex Plant Phenotyping Tasks
Plant phenomics has received increasing interest in recent years in an attempt to bridge the genotype-to-phenotype knowledge gap. There is a need for expanded high-throughput phenotyping capabilities to keep up with an increasing amount of data from high-dimensional imaging sensors and the desire to measure more complex phenotypic traits (Knecht et al., 2016). In this paper, we introduce an ope...
متن کاملEHR Big Data Deep Phenotyping
Objectives: Given the quickening speed of discovery of variant disease drivers from combined patient genotype and phenotype data, the objective is to provide methodology using big data technology to support the definition of deep phenotypes in medical records. Methods: As the vast stores of genomic information increase with next generation sequencing, the importance of deep phenotyping increase...
متن کاملEHR Big Data Deep Phenotyping. Contribution of the IMIA Genomic Medicine Working Group.
OBJECTIVES Given the quickening speed of discovery of variant disease drivers from combined patient genotype and phenotype data, the objective is to provide methodology using big data technology to support the definition of deep phenotypes in medical records. METHODS As the vast stores of genomic information increase with next generation sequencing, the importance of deep phenotyping increase...
متن کاملComparing Rule-Based and Deep Learning Models for Patient Phenotyping
Objective: We investigate whether deep learning techniques for natural language processing (NLP) can be used efficiently for patient phenotyping. Patient phenotyping is a classification task for determining whether a patient has a medical condition, and is a crucial part of secondary analysis of healthcare data. We assess the performance of deep learning algorithms and compare them with classic...
متن کاملDeep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning
Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...
متن کامل